
Formation

Emmanuel Obara

Apr 10, 2024

GETTING STARTED

1 Installation 1

2 Quick Start 3

3 Component Pane 7

4 Component Tree 9

5 Custom Widgets 11

6 Custom Properties 17

7 Canvas 21

8 Simple Calculator 23

9 Formation 31

10 Hoverset 33

11 Studio 35

12 Indices and tables 39

Python Module Index 41

Index 43

i

ii

CHAPTER

ONE

INSTALLATION

To use Formation studio, python 3.7 or higher is required. You can download and install python here.

Formation studio can be installed using pip:

pip install formation-studio

Note: Some linux distributions do not include pip and require you to install it separately. You can follow these
instructions to do so.

If you are using multiple versions of python, pip can install Formation studio on a per version basis. For example, if
you wanted to specify python 3.7:

pip3.7 install formation-studio

1.1 Installation on Linux

Formation studio uses tkinter that (depending on your distribution) may or may not be included by default. If you are
using tkinter for the first time it is advised to install tkinter and imagetk.

For Debian based distributions (i.e. Ubuntu) you would use the following:

sudo apt-get install python3-tk, python3-pil.imagetk

Note: If your distribution is not Debian based you will need to subsitute the appropriate installation commands as per
your distribution. Furthermore, Formation studio does not support python 2. Please ensure you install python 3
packages only.

1

https://www.python.org/downloads/
https://pip.pypa.io/en/stable/installing/
https://pip.pypa.io/en/stable/installing/

Formation

1.2 Launching Formation studio

Once installed you can launch Formation studio from the command line using the following command:

formation-studio

2 Chapter 1. Installation

CHAPTER

TWO

QUICK START

Launch the studio from the commandline using the command

formation-studio

You can select widgets from the Components pane at the top and drag them onto the stage. Click to select widgets
on the workspace and customize them on Stylepane to the right. You can view your widget hierarchies from the
Component tree at the bottom left. To preview the the design, use the preview (“run button”) on the toolbar. After
you are satisfied with the design, save by heading to the menubar _File > Save. Below is a sample studio preview saved
as hello.xml

The underlying xml uses namespaces and is as shown below:

<tkinter.Frame
xmlns:attr="http://www.hoversetformationstudio.com/styles/"
xmlns:layout="http://www.hoversetformationstudio.com/layouts/"
name="Frame_1"
attr:layout="place"
layout:width="616"
layout:height="287"

(continues on next page)

3

Formation

(continued from previous page)

layout:x="33"
layout:y="33">
<tkinter.ttk.Label

name="myLabel"
attr:foreground="#44c33c"
attr:font="{Calibri} 20 {}"
attr:anchor="center" attr:text="Hello World!"
layout:width="539"
layout:height="89"
layout:x="41"
layout:y="41"/>

<tkinter.ttk.Button
name="myButton"
attr:text="Click me"
layout:width="95"
layout:height="30"
layout:x="266"
layout:y="204"/>

</tkinter.Frame>

Note: Note: this xml file has been manually formated to make it more legible but the actual xml file is minimally
formatted since it’s not expected that the developer will need to modify the xml file manually

To load the design in your python code is as simple as:

import the formation library which loads the design for you
from formation import AppBuilder

app = AppBuilder(path="hello.xml")

print(app.myLabel["text"]) # outputs text in the label 'Hello world!'
print(app.myButton["text"]) # outputs text in the button 'Click me'

app.mainloop()

Note: Note: Its advisable that you use widget names that are valid python identifiers to avoid possible issues while

4 Chapter 2. Quick Start

Formation

use the dot syntax to access the widget from the builder object. Use the widgets exact name as specified in the design
to avoid AttributeError

5

Formation

6 Chapter 2. Quick Start

CHAPTER

THREE

COMPONENT PANE

The component pane allows you to access widgets you can put on your design. The component pane is divided into
two major groups:

• Legacy (classic tkinter widgets)

• Native (ttk extension widgets)

The widgets are further divided into sub-groups to allow you to easily locate them based on their functions. These
sub-groups are:

• Container (widgets that can contain other widgets within them)

• Widget (widgets that have special functionality)

• Input (widgets that allow text and other values to be input)

More groups may appear depending on what extensions you are using. The canvas tool for example may avail an
additional canvas group with widgets that can be drawn on a canvas. Find out more on this in the Canvas section

Note:

• You can switch to the group (legacy or native) you want to work with in the drop down at the top left of the
component pane.

• To use a widget in your design file, just drag it to the design area

• You can use the search icon at the top of the pane to find a widget across all sub-groups with ease.

• You can mix widgets in Legacy and Native in the same design.

3.1 Legacy

This consists of the classic tkinter widgets. They allow more style attributes to be set. They look the same on all
systems and their default look may seem outdated but this is made up for by the multitude of style options at your
disposal. Some widgets can only be found in this Legacy group for instance:

• Listbox (displays a list of items)

• Canvas (allows flexible drawing of shapes, images and text)

• Text (text area allowing multiline text input)

• Message (label for longer text)

7

Formation

3.2 Native

This consists of ttk extension widgets. These types of widgets are designed to be themed and hence don’t allow you
to modify several style options that were available in legacy. These widget will look different on different platforms
since they try to look as native as possible to the respective platforms. Some widgets can only be found in this native
group for instance:

• Treeview (displays a items in tabular hierarchical structure)

• Sizegrip (a resizable frame)

• Combobox (Entry widget allowing selection of values from a list)

• Progressbar (display progress of a task)

• LabeledScale (A scale with a built-in label)

8 Chapter 3. Component Pane

CHAPTER

FOUR

COMPONENT TREE

The component tree allows you to view widgets in your design in a hierarchical fashion. You can select widgets from
the component tree by clicking on them. The text shown on the component tree corresponds to the widget id.

You can also access the widget context menu on the component tree as well. This menu is the same as what would be
shown when you right-click on the widget in the design area

Note:

• You can use the search icon at the top of the pane to search through all widgets in the component tree

• You can use the collapse/expand icon at the top of the pane to collapse or expand all nodes in the component
tree.

9

Formation

10 Chapter 4. Component Tree

CHAPTER

FIVE

CUSTOM WIDGETS

5.1 Introduction

Formation studio provides a way to use your own custom widgets apart from the builtin widget sets (tk and ttk). The
widgets will be treated just as any other widget allowing you customize it using tools provided by the studio

5.2 Setting up

To make your custom widget usable in the studio, you will need to define a separate class with some metadata required
by the studio. This class is what the studio will manipulate under the hood. Let us define a simple Custom widget that
can be used as a d-pad like one would find on a game controller

from tkinter import Frame, Button

class DPad(Frame):

def __init__(self, master, **kw):
super(DPad, self).__init__(master, **kw)
self.left = Button(self, text="L", padx=8, pady=5)
self.right = Button(self, text="R", padx=8, pady=5)
self.up = Button(self, text="U", padx=8, pady=5)
self.down = Button(self, text="D", padx=8, pady=5)

self.up.grid(row=0, column=1)
self.left.grid(row=1, column=0)
self.right.grid(row=1, column=2)
self.down.grid(row=2, column=1)

This is a simple compound widget that really just displays the 4 buttons of a d-pad. To Add this to the studio we would
need to define the class with the metadata. Below are some of the supported metadata.

11

Formation

Metadata default Description
dis-
play_name

name of the
meta class

The name used to refer to the widget within the studio

impl the meta’s super
class

The custom widget class

is_container False whether the custom widget allows other widgets to be placed within it.
icon play Text identifier to on of the built in icons to be used as image identifier for the

widget
ini-
tial_dimensions

Automatic The initial dimensions of the widget when first placed on the design pad pro-
vided as a (width, height) tuple

Each of the above metadata is optional and the default will be used if not its not provided. To mark the metadata
class for use by the studio we need to use the WidgetMeta class provided by the studio. It is a python metaclass and is
responsible for the all the magic that goes on under the hood. Below is a sample metadata class for a our D-pad widget

from studio import WidgetMeta

class DPadMeta(DPad, metaclass=WidgetMeta):
display_name = 'D Pad'
impl is not necessary and can be inferred from the inheritance list
impl = DPad
icon = "gaming"
is_container = False
initial_dimensions = 90, 100

5.3 Connecting to the studio

We need to configure the path to the file containing our metadata class in the studio. We head Settings > Widgets
. Click on the + icon and select the path to the file with the metadata class. Click Okay to save the changes.

The dpad.py file used here contains both the implementation and the metadata but that is not necessary. Only the
metadata class is required to be in the file.

from tkinter import Frame, Button
from studio import WidgetMeta

class DPad(Frame):

def __init__(self, master, **kw):
super(DPad, self).__init__(master, **kw)
self.left = Button(self, text="L", padx=8, pady=5)
self.right = Button(self, text="R", padx=8, pady=5)
self.up = Button(self, text="U", padx=8, pady=5)
self.down = Button(self, text="D", padx=8, pady=5)

self.up.grid(row=0, column=1)
(continues on next page)

12 Chapter 5. Custom Widgets

Formation

5.3. Connecting to the studio 13

Formation

(continued from previous page)

self.left.grid(row=1, column=0)
self.right.grid(row=1, column=2)
self.down.grid(row=2, column=1)

class DPadMeta(DPad, metaclass=WidgetMeta):
display_name = 'D Pad'
impl = DPad
icon = "gaming"
is_container = False
initial_dimensions = 90, 100

Our new custom widget should now be available in the components pane under the custom group.

14 Chapter 5. Custom Widgets

Formation

5.4 Reloading Changes

If any changes are made to metadata class file, you can reload the changes without having to restart the studio. Just
head to the component pane settings and select Reload custom widgets.

Note: Widgets already added to the design pad will not be affected. They will continue to use the old definitions until
the design is reloaded the next time. It is advisable that you remove them before you save the design file to avoid nasty
issues when reloading them next time.

5.4. Reloading Changes 15

Formation

16 Chapter 5. Custom Widgets

CHAPTER

SIX

CUSTOM PROPERTIES

Formation studio allows you to specify custom properties for your Custom Widgets. Owing to the adaptive nature of
how the studio handles properties adding custom properties is relatively easy. The studio relies on proper implemen-
tation of the configure, keys, cget, __getitem__ and __setitem__ methods of a widget for custom properties
to be correctly detected. Luckily, formation provides utilities to achieve this through the CustomPropertyMixin Let
us add a custom properties button_color and button_bg to our Dpad widget. We will modify our class to use the
CustomPropertyMixin as shown below

from tkinter import Frame, Button
from formation.utils import CustomPropertyMixin

class DPad(CustomPropertyMixin, Frame):

prop_info = {
"button_color": {

"name": "button_color",
"default": None,
"setter": "set_btn_fg",
"getter": "_btn_fg"

},
"button_bg": {

"name": "button_bg",
"default": None,
"setter": "set_btn_bg",
"getter": "_btn_bg"

}
}

def __init__(self, master, **kw):
super(DPad, self).__init__(master, **kw)
self.left = Button(self, text="L", padx=8, pady=5)
self.right = Button(self, text="R", padx=8, pady=5)
self.up = Button(self, text="U", padx=8, pady=5)
self.down = Button(self, text="D", padx=8, pady=5)

self.up.grid(row=0, column=1)
self.left.grid(row=1, column=0)
self.right.grid(row=1, column=2)
self.down.grid(row=2, column=1)

self._btns = [self.left, self.right, self.up, self.down]
(continues on next page)

17

Formation

(continued from previous page)

self._btn_bg = self.left["bg"]
self._btn_fg = self.left["fg"]

def set_btn_bg(self, val):
for i in self._btns:

i["bg"] = val
self._btn_bg = val

def set_btn_fg(self, val):
for i in self._btns:

i["fg"] = val
self._btn_fg = val

Note: The CustomPropertyMixin is not necessary if configure, keys and the other methods are already implemented
to accommodate you custom properties. It is however advisable to use the mixin as it has been thoroughly tested and
is less prone to issues.

Our widget is ready for use. We still need to inform the studio on how our properties should be handled and what type
of values they contain. The studio supports the following property types:

• choice : Allows selection from a set of values using a dropdown widget. Options are specified as a tuple using
the options key.

• boolean : Selection of true or false using a checkbutton

• relief : Allows selection from the available relief types in tkinter

• cursor : Allows selection from available cursor types in tkinter

• bitmap : Allows selection from the built-in bitmaps

• color : Provides a colorpicker dialog to select colors

• text : Allows entry of arbitrary text

• textarea : Similar to text but allows entry of longer texts.

• number : Entry of integers

• float : Entry of floating point numbers

• duration : Allow entry of durations. You can specify the units options which can be one of (‘ns’, ‘ms’, ‘sec’,
‘min’, ‘hrs’).

• font : Selection from available system fonts. It also includes a font picker that can pick fonts from anywhere
within the studio.

• dimension : Entry of dimension. Currently only supports pixels

• anchor : Allows easy setting of anchor and sticky values by providing realtime preview of anchor/sticky be-
haviour on a dummy widget. Setting the multiple option allows the application of multiple anchors simultane-
ously

• image : Allows user to pick an image from their local machine

• variable : Allows user to select from variables created by the Variable pane

• stringvariable: A variation of the variable type that only allows selection of tk.StringVar

18 Chapter 6. Custom Properties

Formation

Note: It is currently not possible to implement your own types but we hope to make allow custom types in future.

To specify the types our custom properties, we will modify the meta class as shown below:

class DPadMeta(DPad, metaclass=WidgetMeta):
display_name = 'D Pad'
impl = DPad
icon = "gaming"
is_container = False
initial_dimensions = 90, 100

DEF_OVERRIDES = {
"button_color": {

"display_name": "button color",
"type": "color",
you can specify additional options supported by type here
"name": "button_color"

},
"button_bg": {

"display_name": "button bg",
"type": "color",
"name": "button_bg"

}
}

DEF_OVERRIDES is a special attribute checked at runtime by the studio to make decisions on what properties to display
and how. You can also override behaviour of default properties by specifying alternative definitions here.

Note: The key and the name should always match to avoid issues.

Assuming your widget is properly setup as explained in Custom Widgets, if you open the studio and use your custom
widget, the custom properties will appear in the attributes section on the stylepane as shown below

19

Formation

20 Chapter 6. Custom Properties

CHAPTER

SEVEN

CANVAS

Canvas

21

Formation

22 Chapter 7. Canvas

CHAPTER

EIGHT

SIMPLE CALCULATOR

8.1 Setting up

We are going to be building a simple calculator to familiarise ourselves with the basic features of formation studio.
Assuming you already have formation studio installed on your machine (if not, see Installation instructions) fire up the
studio in the terminal as shown below.

formation-studio

8.2 Creating the design

A blank design will open up assuming you are using default settings. On the components pane on the top left, select
legacy on the drop down menu to use classic tkinter widgets and not themed ttk widgets. This will allow us to
customize more attributes. On the vertical tab on the left, select widget and drag one Button and one Label to the
design pad.

Now select input on the vertical tab to access a new set of widgets and drag one Entry to the design pad.

Arrange them as you please and you should have something as shown below.

23

Formation

Note: To move a widget around in the editor you will need to hold the shift key down when dragging. Alternatively
you can move the cursor to the edges of the widget after selecting it and drag when the “hand” cursor appears. To resize
a widget, drag the small squares at the edges and corners

We now set the widget id of these widgets. This is the most important part since this is the same id you will use to
access the widget in your program. To set the widget id use the style pane on the right. The option will always be at
the top in the widget identity section

For the purpose of this tutorial, set the widget id for the widgets added above as follows

• For the Entry widget set widget id to expr

• For the Label widget set widget id to result

• For the Button widget set widget id to calculate

Double click the Label and the Button and change the texts as shown below. Leave the label blank since we will
display the results of the calculations here.

Alternatively, you can use the style pane to set the text attribute along with other style options you deem fit. The style
pane as a whole is divided into 3 main parts

• Widget identity : contains the class and the id of the widget

• Layout : contains options that control the positioning the widget within its parent.

• Attributes : contains options that control the style and other aspects of the widget

Play around with the styles to achieve your desired look. Try changing the colors and fonts. The design can look
however you want.

Note: When selecting color, you can use the dropper on the right to select color from anywhere on your screen. The
colored box on the left can be used to bring up the color picker to allow you more fine-grained control over the color.

24 Chapter 8. Simple Calculator

Formation

8.2. Creating the design 25

Formation

You can also type your desired color name directly on the color entry box.

8.3 Connecting Variables

To access values from our Entry we will need to connect a variable to it. We can then access the value contained in
the entry through the variable. To add a variable, on the right edge of the studio, select Variablepane. A new tool
pane will open. Click on the “plus” icon at the top right and select String on the drop down menu. A new String
variable will be created as shown below. Set the name to expr_var. Once again, this is an important value and will
be used to access the variable in your program.

Now select our Entry widget in the design pad and search through the attributes section of the stylepane for the
textvariable option. We have only created one variable named expr_var so select that.

26 Chapter 8. Simple Calculator

Formation

Note: Once a variable has been created in the VariablePane it can be connected to multiple widgets through the
variable and textvariable options allowing you to control the value in multiple widgets with just one variable.

8.4 Connecting Commands

There are two ways of connecting commands in formation studio. We’ll start with the easiest one

Note: Pick only one of the methods below (preferably the first one) since they basically do the same thing in different
ways. The second method is more advanced and can be used to achieve more complex bindings.

8.4.1 1. Using the command option

This is the easiest method. It is however limited and can only bind click events to buttons and other widgets with the
command option. To bind a command, simply enter the name of the function to be called when the calculate Button
is clicked. This is the same name we will use when defining our callback function so for the sake of the tutorial lets
call it calculate

8.4.2 2. Using event bindings

This method can be used to bind all sorts of events since it uses tkinter’s bind method under the hood. The binding
is done pretty much the same way. To bind first select the calculate Button then open the Eventpane from the right
edge of the studio. Click the “plus” icon at the top right of the pane to add a new event binding. Then fill out the
Sequence and Handler as shown below.

8.4. Connecting Commands 27

Formation

8.5 Wrapping up the design

Save the design file as calculator.xml by doing any of the following

• Go to main menu File > Save

• Press Ctrl+S

• Click on the “Floppy disk” icon in the tool bar

8.6 Writing the code

In the same folder where calculator.xml is saved, create a python file named calculator.py. To load our design
file we will need to import formation loaders and load calculator.xml as shown below. We will use AppBuilder
which will create a toplevel window for us. If you wanted to only load a section and code the rest of the app yourself
you would use Builder instead.

from formation import AppBuilder

app = AppBuilder(path="calculator.xml")

Now let’s define our calculate function which we are to link to the app. This function will be called when the
calculate Button is clicked

def calculate(event=None):
event parameter needs to be there because using the bind method passes an event␣

→˓object
access the expr_var we created earlier to determine the current expression entered
expr = app.expr_var.get()

evaluate the expression
try:

result = eval(expr)
except Exception:

if the expression entered was malformed and could not be evaluated
we will display an error message instead
result = "Invalid expression"

display the result
app.result.config(text=result)

We will now connect the calculate function to our app

app.connect_callbacks({"calculate": calculate})

Alternatively, since the function is in the global scope, you can connect it directly using python’s globals() function

app.connect_callbacks(globals())

Now everything is done we can fire app our app’s mainloop to get the app running

app.mainloop()

28 Chapter 8. Simple Calculator

Formation

8.6.1 Wrapping it up

The complete code to run our app which will be located at calculate.py will be

1 from formation import AppBuilder
2

3 app = AppBuilder(path="calculator.xml")
4

5

6 def calculate(event=None):
7 # event parameter needs to be there because using the bind method passes an event␣

→˓object
8 # access the expr_var we created earlier to determine the current expression entered
9 expr = app.expr_var.get()

10

11 # evaluate the expression
12 try:
13 result = eval(expr)
14 except Exception:
15 # if the expression entered was malformed and could not be evaluated
16 # we will display an error message instead
17 result = "Invalid expression"
18

19 # display the result
20 app.result.config(text=result)
21

22

23 app.connect_callbacks(globals())
24

25 app.mainloop()

You can now run calculator.py and it should display your beautiful working app. Type a simple mathematical
expression in the entry box and click “calculate” and it should display the computed result

8.6. Writing the code 29

Formation

8.7 Conclusion

This was a simple example to get you started. You can learn to build more complex applications using the vast number
of widgets available with just about the same ease as building the one in this tutorial. You can find the detailed API
reference for formation loaders used above in the Loading a design section.

30 Chapter 8. Simple Calculator

CHAPTER

NINE

FORMATION

9.1 Loading a design

9.2 Formation utilities

Documentation for useful utilities provided by formation

31

Formation

32 Chapter 9. Formation

CHAPTER

TEN

HOVERSET

10.1 Widget Catalogue

10.2 Dialog Windows

10.3 Working with menus

class hoverset.ui.menu.EnableIf(predicate, *templates)
Built in manipulator that displays only a set of menu items if a condition is met at runtime. If condition is nt met,
the menu items are displayed but are disabled

manipulated()

Generate templates to be rendered when menu is displayed

Returns
manipulated templates menu

class hoverset.ui.menu.LoadLater(loader)
A built in manipulator that generates templates at runtime using a loader function passed in its constructor

manipulated()

Generate templates to be rendered when menu is displayed

Returns
manipulated templates menu

class hoverset.ui.menu.Manipulator(*templates)
Enables simplification of creation of dynamic menus allowing menu items to be easily manipulated at runtime

manipulated()

Generate templates to be rendered when menu is displayed

Returns
manipulated templates menu

class hoverset.ui.menu.ShowIf(predicate, *templates)
Builtin manipulator that displays a set of menu items only if a certain condition is met at runtime

manipulated()

Generate templates to be rendered when menu is displayed

Returns
manipulated templates menu

33

Formation

hoverset.ui.menu.dynamic_menu(func)
Generate a dynamic menu from a class method

Parameters
func – An instance method taking one positional argument menu. This method wil be called
every time the menu needs to be posted. Note that the menu will always be cleared before the
method is called

Returns
the wrapped method returns a dynamic menu

34 Chapter 10. Hoverset

CHAPTER

ELEVEN

STUDIO

11.1 Studio Architecture

11.1.1 Introduction

• Formation is a design tool intended to make the work of tkinter UI designers easy by providing an intuitive drag
drop interface. It allows designers to employ all layout managers (Pack, Place and Grid) to flexibly achieve various
design goals. For ease of implementation the designer itself is written in what we like to call contemporary tkinter
provided by the hoverset library. You can view the widget catalogue at hoverset.ui.widgets. The supported
widgets have been organised into families of widgets referred to here as widget sets and include:

– Tkinter default (Legacy)

– Tkinter ttk extension (Native implementations of tkinter widgets)

– Extension set (Incomplete)

– Hoverset widget set (Incomplete)

11.1.2 Features Description

A feature is a complete tool window providing means to manipulate the design file. Below are core features imple-
mented in the formation studio:

• Drag drop designer: Formation provides an easy to use drag drop designer. The designer can be
expanded to full screen display to allow focus on design. The designer allows widgets to be moved
from parent to parent as needed to simplify the design process. The designer supports manipulation
using the following layout strategies:

– pack (formerly LinearLayout)

– grid (formerly GridLayout)

– place (formerly FrameLayout)

– TabLayout (for py:class:tkinter.ttk.Notebook)

– PaneLayout (for PanedWindows)

• Component library The component library allows designers to search through the supported widget
sets and add them to the designer. They can filter the components based on their widget sets.

• Component Tree Display the Widget hierarchy and select widgets that may be (due to design) dif-
ficult to access directly from the design pane. Access the context menu of the widget from the com-
ponent tree which is basically just an extension/handle of the widget.

35

https://docs.python.org/3/library/tkinter.html
https://docs.python.org/3/library/tkinter.ttk.html

Formation

• Style pane Access the style and layout attributes of selected widgets. The layout attributes automati-
cally switch to match the layout manager currently handling the widget. Easily manage a wide range
of properties using intuitive editors such as:

– Color: Modify color in RGB, HSL and HSV and hex notation as well as pick colors from any-
where on your computer screen even outside formation itself

– Anchor: Intuitively set anchors as well as sticky attributes

– Text: Write out text values with ease

– Choice: Get all options valid for a given property

– Dimensions: Handles all tkinter dimension notations

– Boolean: Toggle between boolean attributes with a click

• Menu editor Create and edit menus using easy to use drag and drop gestures. Access all attributes
applicable to the various types of menu items and preview the modified menu with the click of a
button.

• Variable pane Create tkinter control variables, access and assign them to widgets in the designer.
Modify the values of the variables on the fly from the manager window. Any control variables added
from the manager immediately reflect in the style pane allowing the designer to assign them to as
many widgets as they desire. Control variables provide an elegant way to set values to connected
widgets which rely on the same value.

36 Chapter 11. Studio

Formation

11.1.3 Structure

• studio.feature : Contains implementation of the various key components of the designer such
as:

– studio.feature.component_tree

– studio.feature.design

– studio.feature.components

– studio.feature.stylepane

– studio.feature.variablepane

These components all implement studio.feature._base.BaseFeaturewhich abstracts all
Feature behaviour and manipulation which can then be built upon if special behaviour is needed.
It contains methods that are to be overridden so as to handle events broadcast by the main
application such as change in widget selection or deletion of a widget among others.

• studio.lib : Contains implementation of widget sets, complete definitions of their properties,
behaviour. It also has implementation for the various layouts used by the designer. Definitions and
implementation of menus and properties that can be applied to the menu components can also be
found here. The files under this folder are:

– studio.lib.layouts: layout implementation

– studio.lib.legacy: classic tkinter widget definition

– studio.lib.native: ttk themed widget extension widgets

– studio.lib.properties: definition for all widget properties modifiable by the style pane.

– studio.lib.pseudo: Base classes for widgets used in the studio designer with added func-
tionality to allow for easy manipulation. Definition for container widgets can also be found here

– studio.lib.menu: Utilities and definitions for handling menus in the studio

– studio.lib.variables: Classes for managing tk variables in the studio

• studio.parsers : Contains implementation for classes that handle conversion from various designated file for-
mats to design view and vice versa. Currently on only xml defined in studio.parsers.xml format is supported
but if any other formats are to be added this would be the package location

• studio.ui: Contain implementation of widgets and user interface components used in the studio. The included
are:

– studio.ui.editors: The ui elements used to modify various widget properties as explained in the style
pane feature

– studio.ui.geometry: Access, analyse and manipulate position and sizes of widgets used by various
studio routines

– studio.ui.highlight: Transient widgets used to guide designers to which widgets currently have focus.
Also contains implementations for resizing and moving widgets in the designer

– studio.ui.tree: Implementation of base class for the tree view widgets used in the studio which allows
easy manipulation using drag drop gestures

– studio.ui.widgets: Assortment of special widgets used in the studio

– studio.ui.about: The about window for the studio

• studio.main: Contains the entry point of studio user interface. Implementation for general functionality and
the coordination of feature windows can be found inside the studio.main.StudioApplication class

11.1. Studio Architecture 37

Formation

11.2 Geometry functions

38 Chapter 11. Studio

CHAPTER

TWELVE

INDICES AND TABLES

• genindex

• modindex

• search

39

Formation

40 Chapter 12. Indices and tables

PYTHON MODULE INDEX

h
hoverset.ui.menu, 33

41

Formation

42 Python Module Index

INDEX

D
dynamic_menu() (in module hoverset.ui.menu), 33

E
EnableIf (class in hoverset.ui.menu), 33

H
hoverset.ui.menu

module, 33

L
LoadLater (class in hoverset.ui.menu), 33

M
manipulated() (hoverset.ui.menu.EnableIf method), 33
manipulated() (hoverset.ui.menu.LoadLater method),

33
manipulated() (hoverset.ui.menu.Manipulator

method), 33
manipulated() (hoverset.ui.menu.ShowIf method), 33
Manipulator (class in hoverset.ui.menu), 33
module

hoverset.ui.menu, 33

S
ShowIf (class in hoverset.ui.menu), 33

43

	Installation
	Installation on Linux
	Launching Formation studio

	Quick Start
	Component Pane
	Legacy
	Native

	Component Tree
	Custom Widgets
	Introduction
	Setting up
	Connecting to the studio
	Reloading Changes

	Custom Properties
	Canvas
	Simple Calculator
	Setting up
	Creating the design
	Connecting Variables
	Connecting Commands
	1. Using the command option
	2. Using event bindings

	Wrapping up the design
	Writing the code
	Wrapping it up

	Conclusion

	Formation
	Loading a design
	Formation utilities

	Hoverset
	Widget Catalogue
	Dialog Windows
	Working with menus

	Studio
	Studio Architecture
	Introduction
	Features Description
	Structure

	Geometry functions

	Indices and tables
	Python Module Index
	Index

